implies that VOR gain must be close to unity (>0.9) during head-free pursuit and that there is thus little, if any, nonvisual suppression.

It is possible, as suggested previously (15), that the apparent reduction in VOR gain induced by the attempt to fixate an imaginary head-fixed target in darkness is actually brought about, not by a parametric reduction of VOR gain, but by the direct suppression of the eye movement itself, using feedback of internal efference copy information. Any attempt to reduce eye velocity by this means during head-free pursuit would be detrimental to performance in just the same way as it would be for head-fixed pursuit. It actually makes a great deal more sense for the VOR to be fully active during natural head movements because stabilization of the visual world must be carried out as the subject tracks objects in the environment while simultaneously engaging in activities such as walking and running that induce passive movements of the head.

REFERENCES

28. Barnes GR, Donnelly SF, Eason RD. Predictive ve-
46. Waterston JA, Barnes GR, Grealy MA. A quantitative study of eye and head movements during smooth pursuit in patients with cerebellar disease. Brain. [In press].